

InGaN Venus Blue LED Chip

ES-CADBV45C

□ Features:

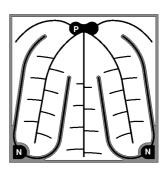
- · High radiant flux
- · Long operation life
- Lambertian radiation

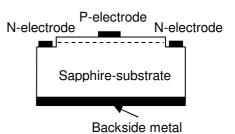
□ Applications:

- Street lighting
- Architectural lighting
- Residential lighting

■ Mechanical Specification:

(1) Dimension


Chip size: 45 mil x 45 mil (1143±25µm x 1143±25µm)


Thickness :5.9 mil (150 \pm 10 μ m)

P bonding pad x 2 : 4.4 mil (112 \pm 10 μ m) N bonding pad x 2 : 4.1 mil (105 \pm 10 μ m)

(2) Metallization

Topside P electrode : Au alloy Topside N electrode : Au alloy Backside metal : Au alloy

☐ Electro-optical Characteristics at 25 °C: (1)

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Forward voltage	V_{f1}		I _f =10uA	1.6			V
	V _{f2}		I _f =350mA		3.4	3.6	V
Reverse current	I _r		V _r =5V			2.0	μA
Dominant wavelength ⁽²⁾	λ_{d}		I _f =350mA	445		455	nm
Spectral half-width	Δλ		I _f =350mA		25		nm
Radiant flux (3)(4)	Ро	H15	I _f =350mA	255		295	mW
		H16		295		340	

Note:

- (1) ESD protection during chip handling is recommended.
- (2) Basically, the wavelength span is 10nm; however, customers' special requirements are also welcome.
- (3) Radiant flux is determined by using a Au-plated TO-can header without an encapsulant.
- (4) Radiant flux measurement allows a tolerance of $\pm 15\%$.

1/2 CC-200904-B

■ Absolute Maximum Ratings:

Parameter	Symbol	Condition	Rating	Unit
Forward DC current	lf	Ta=25°C	≤ 700	mA
Reverse voltage	Vr	Ta=25°C	≤ 5	V
Junction temperature	Tj		≤ 115	°C
		chip	-40 ~ +85	°C
Storage temperature	T _{stg}	chip-on-tape/storage	0 ~ 40	°C
		chip-on-tape/transportation	-20 ~ +65	°C
Temperature during packaging			280(<10sec)	°C

Note:

Maximum ratings are package dependent. The above maximum ratings were determined using a Metal Core Printed Circuit Board (MCPCB) without an encapsulant. Stresses in excess of the absolute maximum ratings such as forward current and junction temperature may cause damage to the LED.

□ Characteristic Curves:

Fig.1-Relative Luminous Intensity vs. Forward Current

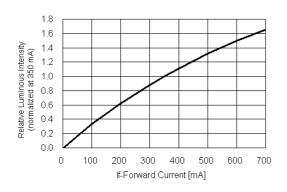


Fig.3-Relative Intensity (@350mA) vs. Ambient Temperature

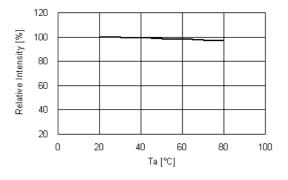


Fig.5-Dominant Wavelength(@350mA) vs. Ambient Temperature

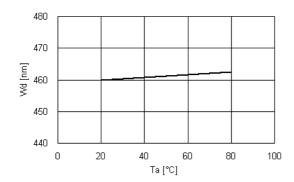


Fig.2- Forward Current vs. Forward Voltage

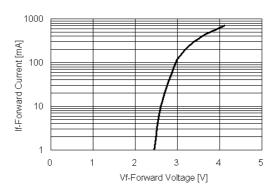


Fig.4-Forward Voltage (@350mA) vs. Ambient Temperature

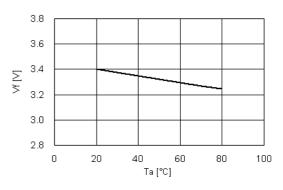
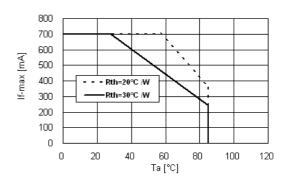



Fig.6 Maximum Driving Forward DC Current vs. Ambient Temperature (Derating based on Tj max. = 115°C)

COPYRIGHT ©2009 Epistar Corporation. All Rights Reserved.

2/2 CC-200904-B